Towards Realistic Performance Bounds for Implicit CFD Codes
W. D. Gropp,** D. K. Kaushik,”" D. E. Keyes,** and B. F. Smith??

®Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439, gropp@mcs.anl.gov.

PMathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439 and Computer Science Department, Old Dominion University, Norfolk, VA
23529, kaushik@cs.odu.edu.

‘Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529,
ISCR, Lawrence Livermore National Laboratory, Livermore, CA 94551, and ICASE;,
NASA Langley Research Center, Hampton, VA 23681, keyes@icase.edu.

dMathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439, bsmith@mcs.anl.gov.

The performance of scientific computing applications often achieves a small fraction of
peak performance [7,17]. In this paper, we discuss two causes of performance problems—
insufficient memory bandwidth and a suboptimal instruction mix—in the context of a
complete, parallel, unstructured mesh implicit CFD code. These results show that the
performance of our code and of similar implicit codes is limited by the memory bandwidth
of RISC-based processor nodes to as little as 10% of peak performance for some critical
computational kernels. Limits on the number of basic operations that can be performed
in a single clock cycle also limit the performance of “cache-friendly” parts of the code.

1. INTRODUCTION AND MOTIVATION

Traditionally, numerical analysts have evaluated the performance of algorithms by
counting the number of floating-point operations. It is well-known that this is not a good
estimate of performance on modern computers; for example, the performance advantage
of the level-2 and level-3 BLAS over the level-one BLAS for operations that involve the

*This work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

fSupported by Argonne National Laboratory under contract 983572401.

fSupported in part by the NSF under grant ECS-9527169, by NASA under contracts NAS1-19480 and
NAS1-97046, by Argonne National Laboratory under contract 982232402, and by Lawrence Livermore
National Laboratory under subcontract B347882.

§This work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

same number of floating-point operations is due to better use of memory, particularly the
reuse of fast memory [5,6]. Paradoxically, however, the success of the level-2 and level-3
BLAS at reaching near-peak levels of performance has obscured the difficulties faced by
many other numerical algorithms. On the algorithmic side, tremendous strides have been
made; many algorithms now require only a few floating-point operations per mesh point.
However, on the hardware side, memory system performance is improving at a rate that
is much slower than that of processor performance [8,11]. The result is a mismatch in
capabilities: algorithm design has minimized the work per data item, but hardware design
depends on executing an increasing large number of operations per data item.

The importance of memory bandwidth to the overall performance is suggested by the
performance results shown in Figure 1. These show the single-processor performance for
our code, PETSc-FUN3D [2,9], which was originally written by W.K. Anderson of NASA
Langley [1]. The performance of PETSc-FUN3D is compared to the peak performance
and the result of the STREAM benchmark [11] which measures achievable performance
for memory bandwidth-limited computations. These show that the STREAM results are
much better indicator of performance than the peak numbers. We illustrate the perfor-
mance limitations caused by insufficient available memory bandwidth with a discussion
of sparse matrix-vector multiply, a critical operation in many iterative methods used in
implicit CFD codes, in Section 2.

Even for computations that are not memory intensive, computational rates often fall far
short of peak performance. This is true for the flux computation in our code, even when
the code has been well tuned for cache-based architectures [10]. We show in Section 3
that instruction scheduling is a major source of the performance shortfall in the flux
computation step.

This paper focuses on the per-processor performance of compute nodes used in parallel
computers. Our experiments have shown that PETSc-FUN3D has good scalability [2]. In
fact, since good per-processor performance reduces the fraction of time spent computing
as opposed to communication, achieving the best per-processor performance is a critical
prerequisite to demonstrating uninflated parallel performance [3].

2. PERFORMANCE ANALYSIS OF THE SPARSE MATRIX-VECTOR PROD-
uUcCT

The sparse matrix-vector product is an important part of many iterative solvers used
in scientific computing. While a detailed performance modeling of this operation can
be complex, particularly when data reference patterns are included [14-16], a simplified
analysis can still yield upper bounds on the achievable performance of this operation. In
order to illustrate the effect of memory system performance, we consider a generalized
sparse matrix-vector multiply that multiplies a matrix by N vectors. This code, along
with operation counts, is shown in Figure 2.

2.1. Estimating the Memory Bandwidth Bound

To estimate the memory bandwidth required by this code, we make some simplifying
assumptions. We assume that there are no conflict misses, meaning that each matrix and
vector element is loaded into cache only once. We also assume that the processor never
waits on a memory reference; that is, that any number of loads and stores are satisfied in

EPeak Mflops/s mStream Triad Mflops/s @ Observed Mflops/s

900+

800

700+

600+

Origin T3E

Figure 1. Sequential performance of PETSc-FUN3D for a small grid of 22,677 vertices
(with 4 unknowns per vertex) run on IBM SP (120 MHz, 256 MB per processor), SGI
Origin 2000 (250 MHz, 512 MB per node), and T3E (450 MHz, 256 MB per processor).

a single cycle.

For the algorithm presented in Figure 2, the matrix is stored in compressed row storage
format (similar to PETSc’s ALJ format [4]). For each iteration of the inner loop in Figure 2,
we need to transfer one integer (ja array) and N + 1 doubles (one matrix element and N
vector elements) and we do NV floating-point multiply-add (fmadd) operations or 2N flops.
Finally, we store the N output vector elements. This leads to the following estimate of
the data volume:

Total Bytes Transferred = m * sizeof_int 4+ 2 x m x N x sizeof_double
+nz x (sizeof_int 4 sizeof_double)
= 4x(m+nz)+8x*(2xmx N +nz).

This gives us an estimate of the bandwidth required in order for the processor to do
2xnz* N flops at the peak speed:

4N\ m 12
Bytes Transferred /fmadd — (16 -)-—- ==
ytes Transferred/fma + ~N) s + N

Alternatively, given a memory performance, we can predict the maximum achievable
performance. This results in

2
X BW, 1
(16 +)= + & D)

nz

Mpw =

where Mpy is measured in Mflops/sec and BW stands for the available memory band-
width in Mbytes/s, as measured by STREAM [11] benchmark. (The raw bandwidth based

for (i = 0, i < m; i++) {

jrow = ia(i+1) // 1 0f, AT, Ld
ncol = ia(i+1) - ia(i) // 1 Iop
Initialize, suml, ..., sumN // N Ld
for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow),

x1(ja(jrow)), ..., xN(ja(jrow)) // 1 0f, N+2 AT, N+2 Ld

do N fmadd (floating multiply add) // 2N Fop

jrowt++
} // 1 Iop, 1 Br
Store suml, ..., sumN in

yi(i), ..., yN(i) // 1 0f, N AT, N St
} // 1 Iop, 1 Br

Figure 2. General Form of Sparse Matrix-Vector Product Algorithm: storage format is
AlJ or compressed row storage; the matrix has m rows and nz non-zero elements and
gets multiplied with N vectors; the comments at the end of each line show the assembly
level instructions the current statement generates, where AT is address translation, Br is
branch, Iop is integer operation, Fop is floating-point operation, 0f is offset calculation,
LD is load, and St is store.

on memory bus frequency and width is not a suitable choice since it can not be sustained
in any application; at the same time, it is possible for some applications to achieve higher
bandwidth than that measured by STREAM).

In Table 1, we show the memory bandwidth required for peak performance and the
achievable performance for a matrix in AIJ format with 90,708 rows and 5,047,120 non-
zero entries on an SGI Origin2000 (unless otherwise mentioned, this matrix is used in
all subsequent computations). The matrix is a typical Jacobian from a PETSc-FUN3D
application (incompressible version) with four unknowns per vertex. The same table also
shows the memory bandwidth requirement for the block storage format (BALJ) [4] for
this matrix with a block size of four; in this format, the ja array is smaller by a factor of
the block size. We observe that the blocking helps significantly by cutting down on the
memory bandwidth requirement. Having more than one vector also requires less memory
bandwidth and boosts the performance: we can multiply four vectors in about 1.5 times
the time needed to multiply one vector.

2.2. Estimating the Operation Issue Limitation

To analyze this performance bound, we assume that all the data items are in primary
cache (that is equivalent to assuming infinite memory bandwidth). Referring to the sparse
matrix-vector algorithm in Figure 2, we get the following composition of the workload for
each iteration of the inner loop:

e N + 5 integer operations

Table 1

Effect of Memory Bandwidth on the Performance of Sparse Matrix-Vector Product on SGI
Origin 2000 (250 MHz R10000 processor). The STREAM benchmark memory bandwidth
[11] is 358 MB/s; this value of memory bandwidth is used to calculate the ideal Mflops/s;
the achieved values of memory bandwidth and Mflops/s are measured using hardware
counters on this machine. Our experiments show that we can multiply four vectors in 1.5
times the time needed to multiply one vector.

Number of Bandwidth (MB/s) Mflops/s
Format | vectors | Bytes/fmadd | Required | Achieved | Ideal | Achieved
AlJ 1 12.36 3090 276 58 45
AlJ 4 3.31 827 221 216 120
BAILJ 1 9.31 2327 280 84 55
BAILJ 4 2.54 635 229 | 305 175

e 2 x N floating-point operations (N fmadd instructions)
o N + 2 loads and stores

Most contemporary processors can issue only one load or store in one cycle. Since the
number of floating-point instructions is less than the number of memory references, the
code is bound to take at least as many cycles as the number of loads and stores. This leads
to the following expression for this performance bound (denoted by M;g and measured in
Mflops/sec):

2nzN
Mis =

= (N +2) Fm x Clock Frequency. (2)

2.3. Performance Comparison

In Figure 3, we compare three performance bounds: the peak performance based on
the clock frequency and the maximum number of floating-point operations per cycle, the
performance predicted from the memory bandwidth limitation in Equation 1, and the
performance based on operation issue limitation in Equation 2. For the sparse matrix-
vector multiply, it is clear that the memory-bandwidth limit on performance is a good
approximation. The greatest differences between the performance observed and predicted
by memory bandwidth are on the systems with the smallest caches (IBM SP and T3E),
where our assumption that there are no conflict misses is likely to be invalid.

3. FLUX CALCULATION

A complete CFD application has many computational kernels. Some of these, like the
sparse matrix-vector product analyzed in Section 2, are limited in performance by the
available memory bandwidth. Other parts of the code may not be limited by memory

bandwidth, but still perform significantly below peak performance. In this section, we
consider such a step in the PETSc-FUN3D code.

E Theoretical Peak B Mem BW Peak
O Oper. Issue Peak O Observed

900+
800+
7004
600
500+
400+
300+
2004
100+

O_‘ T T
SP Origin T3E Pentium Ultra Il

Figure 3. Three performance bounds for sparse matrix-vector product; the bounds based
on memory bandwidth and instruction scheduling are much more closer to the observed
performance than the theoretical peak of the processor. One vector (N = 1), matrix
size, m = 90,708, nonzero entries, nz = 5,047,120. The processors are: 120 MHz IBM SP
(P2SC “thin”, 128 KB L1), 250 MHz Origin 2000 (R10000, 32 KB L1, and 4 MB L2),
450 MHz T3E (DEC Alpha 21164, 8 KB L1, 96 KB unified L.2), 400 MHz Pentium II
(running Windows NT 4.0, 16 KB L1, and 512 KB L2), and 360 MHz SUN Ultra II (4
MB external cache). Memory bandwidth values are taken from the STREAM benchmark
web-site.

The flux calculation is a major part of our unstructured mesh solver and accounts for
over 50% of the overall execution time. Since PETSc-FUN3D is vertex-centered code,
the flow variables are stored at nodes. While making a pass over an edge, the flow
variables from the node-based arrays are read, many floating-point operations are done,
and residual values at each node of the edge are updated. An analysis of the code suggests
that, because of the large number of floating-point operations, memory bandwidth is not
a limiting factor. Measurements on our Origin2000 support this; only 57 MB/sec are
needed. However, the measured floating-point performance is 209 Mflops/sec out of a
peak of 500 Mflops/sec. While this is good, it is substantially under the performance that
can be achieved with dense matrix-matrix operations. To understand where the limit on
the performance of this part of the code comes from, we take a close look at the assembly
code for the flux calculation function. This examination yields the the following mix of
the workload for each iteration of the loop over edges:

e 519 total instructions

e 111 integer operations

e 250 floating-point instructions of which there are 55 are fmadd instructions, for 305
flops

e 155 memory references

If all operations could be scheduled optimally — say, one floating-point instruction,
one integer instruction, and one memory reference per cycle — this code would take
250 instructions and achieve 305 Mflops/s. However, there are dependencies between
these instructions, as well as complexities in scheduling the instructions [12,13], making
it very difficult for the programmer to determine the number of cycles that this code
would take to execute. Fortunately, many compilers provide this information as comments
in the assembly code. For example, on Origin2000, when the code is compiled with
cache optimizations turned off (consistent with our assumption that data items are in
primary cache for the purpose of estimating this bound), the compiler estimates that the
above work can be completed in about 325 cycles. This leads to a performance bound
of 235 Mflops/sec (47% of the peak on 250 MHz processor). We actually measure 209
Mflops/sec using hardware counters. This shows that the performance in this phase of
the computation is actually restricted by the instruction scheduling limitation. We are
working on an analytical model for this phase of computation.

4. CONCLUSIONS

We have shown that a relatively simple analysis can identify bounds on the performance
of critical components in an implicit CFD code. Because of the widening gap between CPU
and memory performance, those parts of the application whose performance is bounded
by the available memory bandwidth are doomed to achieve a declining fraction of peak
performance. Because these are bounds on the performance, improvements in compilers
cannot help. For these parts of the code, we are investigating alternative algorithms, data
structures, and implementation strategies. One possibility, suggested by the analysis in
Section 2, is to use algorithms that can make use of multiple vectors instead of a single
vector with each sparse-matrix multiply.

For another part of our code, the limitation is less fundamental and is related to the mix
of floating-point and non-floating-point instructions. Analyzing this code is more difficult;
we relied on information provided by the compiler to discover the instruction mix and
estimates on the number of cycles that are required for each edge of the unstructured mesh.
Improving the performance of this part of the code may require new data-structures (to
reduce non-floating-point work) and algorithms (to change the balance of floating-point
to other instructions).

5. ACKNOWLEDGMENTS

The authors thank Kyle Anderson of the NASA Langley Research Center for providing
FUN3D. Satish Balay, and Lois McInnes of Argonne National Laboratory co-developed
the PETSc software employed in this paper. Computer time was supplied by the DOE.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing turbulent
flows on unstructured grids. Computers and Fluids, 23:1-21, 1994.

W. K. Anderson, W. D. Gropp, D. K. Kaushik D. E. Keyes, and B. F.
Smith. Achieving high sustained performance in an unstructured mesh CFD
application. Technical report, MCS Division, Argonne National Laboratory,
http://www.mcs.anl.gov/petsc-fun3d/papers.html, August 1999.

D. F. Bailey. How to fool the masses when reporting results on parallel computers. Super-
computing Review, pages 54-55, 1991.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. The Portable, Extensible, Toolkit
for Scientific Computing (PETSc) ver. 22. http://www.mcs.anl.gov/petsc/petsc.html,
1998.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of For-
tran basic linear algebra subprograms: Model implementation and test programs. ACM
Transactions on Mathematical Software, 14:18-32, 1988.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 16:1-28, 1988.

W. D. Gropp. Performance driven programming models. In Massively Parallel Programming
Models (MPPM-97), pages 61-67. IEEE Computer Society Press, 1997. November 12-14,
1997; London; Third working conference.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 1996.

D. K. Kaushik, D. E. Keyes, and B. F. Smith. On the interaction of architecture and algo-
rithm in the domain-based parallelization of an unstructured grid incompressible flow code.
In J. Mandel et al., editor, Proceedings of Proceedings of the 10th International Conference
on Domain Decomposition Methods, pages 311-319. Wiley, 1997.

D. K. Kaushik, D. E. Keyes, and B. F. Smith. Newton-Krylov-Schwarz methods for aerody-
namic problems: Compressible and incompressible flows on unstructured grids. In C.-H. Lai
et al., editor, Proceedings of the 11th International Conference on Domain Decomposition
Methods. Domain Decomposition Press, Bergen, 1999.

J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers.
Technical report, University of Virginia, 1995. http://www.cs.virginia.edu/stream.
MIPS Technologies, Inc., http://techpubs.sgi.com/library/manuals/2000/007-2490~
001/pdf/007-2490-001.pdf. MIPS R10000 Microprocessor User’s Manual, January 1997.
Silicon Graphics, Inc, http://techpubs.sgi.com/library/manuals/3000/007-3430-002/
pdf/007-3430-002.pdf. Origin 2000 and Onyx2 Performance and Tuning Optimization
Guide, 1998. Document Number 007-3430-002.

O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on caches. In
Proceedings of Supercomputing 92, pages 578-587. IEEE Computer Society Press, 1992.

S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplica-
tion. IBM J. Res. and Dewv., 41:711-725, 1997.

J. White and P. Sadayappan. On improving the performance of sparse matrix-vector mul-
tiplication. In Proceedings of the 4th International Conference on High Performance Com-
puting (HiPC ’97), pages 578-587. IEEE Computer Society, 1997.

W. A. Wulf and A. A. McKee. Hitting the wall: Implications of the obvious. Technical
Report CS-94-48, University of Virginia, Dept. of Computer Science, December 1994.

